2 CART
2.4 The rpart
package
library(rpart)
treeDef <- rpart(type ~ ., data = spamApp)
print(treeDef, digits = 2)
plot(treeDef)
text(treeDef, xpd = TRUE)
set.seed(601334)
treeMax <- rpart(type ~ ., data = spamApp, minsplit = 2, cp = 0)
plot(treeMax)
treeMax$cptable
cpOpt <- treeMax$cptable[ which.min(treeMax$cptable[, 4]), 1 ]
treeOpt <- prune(treeMax, cp = cpOpt)
plot(treeOpt)
text(treeOpt, xpd = TRUE, cex = 0.8)
2.5 Competing and surrogate splits
2.5.2 Surrogate splits
2.5.3 Interpretability
2.6 Examples
2.6.1 Predicting ozone concentration
2.6.2 Analyzing genomic data
library(rpart)
data("vac18", package = "mixOmics")
VAC18 <- data.frame(vac18$genes, "stimu" = vac18$stimulation)
VacTreeDef <- rpart(stimu ~ ., data = VAC18)
print(VacTreeDef)
plot(VacTreeDef)
text(VacTreeDef, use.n = TRUE, xpd = TRUE)
set.seed(788182)
VacTreeMax <- rpart(stimu ~ ., data = VAC18, minsplit = 2, cp = 0)
plot(VacTreeMax)
text(VacTreeMax, use.n = TRUE, xpd = TRUE)