rpart
randomForest
ntree
mtry
VSURF
RFDefImp <- randomForest(type ~ ., data = spamApp, importance=TRUE) varImpPlot(RFDefImp, type = 1, scale = FALSE, n.var = ncol(spamApp) - 1, cex = 0.8, main = "Importance des variables")
bagStumpImp <- randomForest(type~., spamApp, mtry = ncol(spamApp) - 1, maxnodes=2, importance=TRUE) varImpPlot(bagStumpImp, type = 1, scale = FALSE, n.var = 20, cex = 0.8, main = "Importance des variables")
RFStumpImp <- randomForest(type~., spamApp, maxnodes=2, importance=TRUE) varImpPlot(RFStumpImp, type = 1, scale = FALSE, n.var = 20, cex = 0.8, main = "Importance des variables")
library(mlbench) fried1Simu <- mlbench.friedman1(n = 500) fried1Data <- data.frame(fried1Simu$x, y = fried1Simu$y) fried1RFimp <- randomForest(y ~., fried1Data, importance = TRUE) varImpPlot(fried1RFimp, type = 1, scale = FALSE, main = "Importance des variables")
partialPlot(fried1RFimp, fried1Data, x.var = "X1", main = "X1")
library("randomForest") data("Ozone", package = "mlbench") OzRFDefImp <- randomForest(V4 ~ ., Ozone, na.action = na.omit, importance = TRUE)
varImpPlot(OzRFDefImp, type = 1, scale = FALSE, main = "Importance des variables")
library(randomForest) data("vac18", package = "mixOmics")
geneExpr <- vac18$genes stimu <- vac18$stimulation
vacRFDefImp <- randomForest(x = geneExpr, y = stimu, mtry = ncol(geneExpr)/3, importance = TRUE)
varImpPlot(vacRFDefImp, type = 1, scale = FALSE, cex = 0.8)
vacImp <- vacRFDefImp$importance[, nlevels(stimu) + 1] plot(sort(vacImp, decreasing = TRUE), type = "l", xlab = "Variables", ylab = "Importance des variables")